
Diagnosing performance problems

by visualizing and comparing system behaviours

Raja R. Sambasivan⋆, Alice X. Zheng†,

Elie Krevat⋆, Spencer Whitman⋆, Gregory R. Ganger⋆

⋆Carnegie Mellon University, †Microsoft Research

CMU-PDL-10-103

February 2010

Parallel Data Laboratory

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Abstract

Spectroscope is a new toolset aimed at assisting developers with the long-standing challenge of performance debugging in dis-

tributed systems. To do so, it mines end-to-end traces of request processing within and across components. Using Spectroscope,

developers can visualize and compare system behaviours between two periods or system versions, identifying and ranking various

changes in the flow or timing of request processing. Examples of how Spectroscope has been used to diagnose real performance

problems seen in a distributed storage system are presented, and Spectroscope’s primary assumptions and algorithms are evaluated.

Acknowledgements: We thank the members and companies of the PDL Consortium (including APC, Data Domain, EMC, Facebook, Google,

Hewlett-Packard Labs, Hitachi, IBM, Intel, LSI, Microsoft Research, NEC Laboratories, Network Appliance, Oracle, Seagate, Sun, Symantec,

VMWare, and Yahoo! Labs) for their interest, insights, feedback, and support. This research was sponsored in part by NSF grants #CNS-0326453

and #CCF-0621508, by a Google research award, by DoE award DE-FC02-06ER25767, and by CyLab under ARO grant DAAD19-02-1-0389.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Diagnosing performance problems by visualizing and comparing system
behaviours

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Parallel Data
Laboratory,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Spectroscope is a new toolset aimed at assisting developers with the long-standing challenge of
performance debugging in distributed systems. To do so, it mines end-to-end traces of request processing
within and across components. Using Spectroscope, developers can visualize and compare system
behaviours between two periods or system versions, identifying and ranking various changes in the flow or
timing of request processing. Examples of how Spectroscope has been used to diagnose real performance
problems seen in a distributed storage system are presented, and Spectroscope’s primary assumptions and
algorithms are evaluated.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: comparing system behaviours, end-to-end tracing, hypothesis testing, performance debug-

ging, performance problem diagnosis, response-time mutations, request-flow graphs, structural mutations,

structural performance problems, visualizing system behaviour

1 Introduction

Figure 1: Example request-flow graph. The graph shows a striped READ in Ursa Minor [1]. Nodes

represent trace points and edges are labeled with the time between successive events. Node labels are

constructed by concatenating the machine name (e.g., e10), component name (e.g., NFS3), instrumentation

point name (e.g., READ CALL TYPE), and an optional semantic label (e.g., NFSCACHE READ MISS).

Diagnosing the root cause of performance problems in a distributed system is hard. Doing so is par-

ticularly difficult when the problem relates to the interactions between components [23] rather than being

isolated to a single component (which can enable use of single-component tools, like DTrace [5]). Unfor-

tunately, little assistance is available for performance debugging in distributed systems—in most, there is

even a lack of raw information with which to start.

Recent work has offered a solution to the dearth of information: end-to-end traces of activity in the

distributed system [3, 7, 9, 10, 31]. These traces capture the path (e.g., the sequence of functions executed)

and timing of each request within and across the components of the system and, as such, represent the entire

behaviour of the system in response to a workload. See Figure 1 for an example. Research has shown that

such tracing introduces little overhead.

The richness of such traces creates a “haystack” within which insights (”needles”) into performance

problems exist. The challenge is to find them. We need tools that help developers obtain improved un-

derstanding of their systems and focus their attention on the parts of the system most likely causing the

problem.

This paper describes Spectroscope and experiences using it. Spectroscope analyzes end-to-end traces to

help developers understand and diagnose performance problems in a distributed storage system called Ursa

Minor [1]. Specifically, Spectroscope helps developers build intuition about the system by visualizing its

behaviour in response to a workload. In addition, it helps diagnose the root cause of changes in performance

by comparing the behaviour of the system before and after the change.

Visualizing system behaviour: To help with building intuition, Spectroscope displays request-flow

graphs, which are paths taken through the system by individual requests. Since even relatively small bench-

marks involve many thousands of requests, Spectroscope groups identical paths into categories and allows

them to be ranked according to a metric of interest (e.g., average response time). A given visualization

shows the structure of requests assigned to a category, identifying trace points reached, parallel paths, and

synchronization points. Spectroscope also shows statistical information about each category, such as the

1

C a c h eH i tR e p l yR e a d C a c h eM i s sS t a r tR e p l y
R e a d2 0 u s1 0 u s5 , 0 0 0 u s

2 0 u s1 0 0 u s
O r i g i n a t o r S t r u c t u r a lM u t a t i o n O r i g i n a t o r R e s p o n s e � T i m eM u t a t i o n

E n d1 0 0 u s R e p l y
W r i t e

2 , 0 0 0 u sS t a r t S t a r tE n d E n d1 0 u sR a n k : 1R e q u e s t s : 7 0 0 0 R a n k : 2R e q u e s t s : 5 0 0 0
1 0 u s5 , 0 0 0 u sR e p l y

W r i t eS t a r t S t a r tE n d E n d1 0 u s
1 0 u s5 , 0 0 0 u s

Figure 2: Spectroscope’s output when comparing system behaviours. Structural mutations and response-

time mutations are ranked by their affect on the change in performance. The item ranked first is a structural

mutation, whereas the one ranked second is a response-time mutation. For spacing reasons, mocked-up

graphs are shown in which nodes represent the type of component accessed.

average response time, frequency, variance in response time, and average latency between instrumentation

points executed. Simply viewing this information can often help developers identify architectural problems

or problems induced by excessively slow interactions. For example, the developer might notice a set of

interactions that can be processed in parallel, instead of sequentially.

Comparing system behaviours: A primary focus of Spectroscope, however, is assisting with diagno-

sis of changes in performance. Many real-world scenarios require such diagnosis, including violations of

previously-met service-level objectives and performance regressions due to code upgrades. Spectroscope

builds on the fact that many performance changes manifest in the system as mutations in the way requests

are processed. It takes as input requests-flow graphs from two system executions (or periods) and identifies

new behaviour observed only after the performance change. To aid diagnosis, Spectroscope ranks these

mutations by their expected contribution to the performance change and, for each, identifies their candidate

originators—what the mutation might have looked like before the change.

Mutations can occur in two flavors: response-time and structural. Response-time mutations are requests

that have changed in the amount of time needed for them to be serviced. For example, an “upgraded” data

structure may be slower to access than in the previous system version. In addition to identifying response-

time mutations, Spectroscope attempts to identify the specific interactions along the request’s path that now

take longer. Figure 2 illustrates an example, on the right.

Structural mutations are requests that have changed in the path they take through the distributed system,

such as a request that used to hit in a cache, but now misses and must be serviced by a remote component.

Comparing a structural mutation to its originator exposes where the request flows diverge, which often

localizes the source of the problem. On the left, Figure 2 illustrates a simplified structural mutation, which

would guide a developer to examine the particular cache in question.

It is often possible to “explain” an observed mutation—that is, identify why it occurred—by identifying

the differences in low-level parameters (e.g., function call or RPC parameters) seen by the mutation and its

originator. Knowledge of such differences can sometimes immediately reveal the root cause, or can further

aid diagnosis. For example, a change in performance that yields response-time mutations may be caused

because extra, unnecessary, data is now being sent in RPC calls. In this case, in addition to identifying the

resulting response-time mutations, the problem can be further localized by identifying that the RPC message

lengths have increased. Given a category containing structural mutations and a category containing its

2

Da
ta a

cce
ss

M
et
ad
at
a
ac
ce
ss

Data

request

Application

NFS Server

SN

Metadata

Server

Trace

Server

Figure 3: Ursa Minor Architecture. Ursa Minor can be deployed in many configurations, with an arbitrary

number of NFS servers, metadata servers, storage nodes (SNs), and trace servers. This diagram shows a

common 5-component configuration.

corresponding originators, Spectroscope can generate the set of low-level parameters that best differentiate

them.

The rest of this paper is organized as follows. Section 2 describes several example problems encoun-

tered with Ursa Minor, illustrating a range amenable to diagnosis by comparing system behaviours. Sec-

tion 3 describes the end-to-end tracing infrastructure on which Spectroscope is built. Section 4 describes

the design and implementation of the Spectroscope analysis engine. Section 5 evaluates Spectroscope’s key

underlying assumptions and algorithms. Section 6 describes related work and Section 7 concludes.

2 Problems seen in Ursa Minor

In developing Ursa Minor, we encountered many performance problems that were very difficult to diagnose

without better tools. This section describes some of these problems and how Spectroscope helped the

authors diagnose them. It is worth noting that root causes for all of the problems described in this section

were not known a priori; rather, they were identified by the authors while iteratively developing and using

Spectroscope.

Section 2.1 describes necessary details about Ursa Minor. Sections 2.2, 2.3, and 2.4 describe the perfor-

mance problems and how they were diagnosed using Spectroscope. Finally Section 2.5 presents a high-level

summary.

2.1 Ursa Minor

Ursa Minor is a prototype distributed storage service being developed to serve as a testbed for autonomic

computing [18] research. It is a direct-access storage system built as per the NASD model [11]. Details

about its implementation can be found in Abd-El-Malek et al. [1]; only the relevant details are discussed

here.

Figure 3 illustrates the Ursa Minor architecture, which is comprised of potentially many NFS servers,

storage nodes (SNs), metadata servers (MDSs), and end-to-end-trace servers. To access data, clients of Ursa

Minor must first send a request to a metadata server asking for the appropriate permissions and location of

the data on the storage nodes. Upon obtaining this metadata, clients are free to access the storage nodes

directly.

3

The components of Ursa Minor are usually run on separate machines within a datacenter. Though Ursa

Minor supports an arbitrary number of components, it is usually run in a simple 5-machine configuration

during development and testing. Specifically, one NFS server, one metadata server, one trace server, and

two storage nodes are used; one storage node stores data, while the other stores metadata. This is the

configuration in which all of the problems described in this section were observed and diagnosed.

2.2 Problem 1: Create behaviour

By visualizing system behaviour induced by running benchmarks such as postmark-large and SFS971,

we were able to identify an architectural issue with the manner in which CREATEs are handled. The visual-

ization, which presented categories ranked by average response time, showed that the highest ranked ones

were CREATEs. Examining these categories revealed two irregularities. First, to serve a CREATE operation,

the metadata server was executing a tight inter-component loop with a storage node. Each iteration of the

loop required on the order of milliseconds, meaning this loop greatly affected response times. Second, re-

quests in the various categories that contained CREATEs differed only in the number of times they executed

this loop. CREATEs issued at the beginning of the benchmark executed the loop only a few times, whereas

those issued near the end executed the loop dozens of times and, hence, incurred response times on the order

of 100s of milliseconds.

Conversations with the metadata server’s developer have led us to the root cause. When servicing a

CREATE, the metadata server must traverse a B-tree in order to find a location in which to insert the created

item’s metadata. As the number of objects in the system grows, the probability that the insertion will require

non-leaf pages to be recursively split up to the root increases. Each step of the recursion manifests as an

iteration of the loop observed in the request-flow graphs. The developer is currently considering increasing

the page size as a means of ameliorating this behaviour.

Identification of this interesting CREATE behaviour is an instance of how simply visualizing request-

flow graphs can help identify architectural issues in a distributed system. Though simple per request-type

performance counters could have revealed that CREATEs are the most expensive operations in Ursa Minor,

they would not have shown the reason they are expensive is because of a tight inter-component loop.

2.3 Problem 2: MDS configuration

Every night many benchmarks are run on the latest Ursa Minor build. After one large code check-in,

performance of many of these benchmarks decayed significantly. Using Spectroscope, we were able to

determine that the root cause of the problem was a change in the metadata server’s configuration file. Where

before the check-in, this file specified that all metadata should be written to a dedicated storage node, after

the check-in, the file specified that all metadata should be written to the same storage node as that used for

regular data. As such, the load on the data storage node increased, resulting in slower performance for all

requests that accessed it.

To diagnose this problem using Spectroscope, we obtained the request-flow graphs generated by one

run of postmark-large on Ursa Minor from before the check in and another from after. The graphs from

these two periods were fed into Spectroscope to identify the changes in behaviour that most accounted for

the change in performance. As output, Spectroscope identified many structural-mutation categories (i.e.,

categories containing structural mutations) and corresponding candidate originator categories. We observed

these mutations and originators differed only in the storage node they accessed. Additionally, we realized

that all of the structural mutations were requests that incurred metadata accesses. As developers of Ursa

Minor, this information was enough to lead us to the root cause.

1Details about these benchmarks can be found in Section 5.1

4

2.4 Problem 3: Metadata prefetching

A few years ago, several graduate students, including one of the authors of this paper, tried to add server-

driven metadata prefetching functionality to Ursa Minor [14]. This feature was intended to intelligently

prefetch metadata to clients on every metadata access, in hopes of squashing future accesses. Since metadata

accesses are relatively expensive—they can incur both a network and processing overhead—reducing the

number of these accesses, we believed, would greatly reduce response time and improve performance on

closed workloads. Once the feature was implemented, however, the expected performance improvement

was not observed. Though use of prefetching did increase the number of cache hits at the client’s metadata

cache, it actually increased the overall runtime of benchmarks such as linux-build, postmark-large,

and grep. The graduate students attempted to determine why the expected performance benefit was not

observed for a few months after the implementation was finished, but eventually gave up and moved on.

To diagnose this problem using Spectroscope, two sets of request-flow graphs were obtained: the first

was generated by running postmark-large on Ursa Minor without prefetching and the second by run-

ning the same benchmark with prefetching turned on. When fed these inputs, Spectroscope identified many

structural-mutation categories containing requests that incurred metadata server accesses. All of these struc-

tural mutations differed from their candidate originators in that they incurred several calls to the database

used to store metadata; each of these calls added a small fixed amount to the mutation’s response time.

Further analysis revealed that these database calls reflected the extra work performed by metadata accesses

to prefetch metadata to clients.

The above information provided us with the intuition necessary to determine why server-driven meta-

data prefetching did not improve performance. The extra time spent in the DB calls by metadata server

accesses out-weighed the time savings generated by the increase in cache hits. This imbalance was exacer-

bated by a limitation of Ursa Minor’s architecture and by a poor design choice made when implementing

the prefetching functionality. With regard to the first, all WRITE operations require metadata accesses; for

consistency reasons, they cannot be squashed, even if the metadata they require is cached at the client. With

regards to the latter, the prefetching implementation, since it was server driven, did not know which meta-

data the clients had already cached. As a result, in certain cases the extra cost of prefetching was duplicated

many times.

2.5 Summary

The problems described in this section highlight a very important fact: Spectroscope is not designed to

automate performance diagnosis. To do so for an arbitrary performance problem would be a monumental

task. Automation is the eventual goal, but Spectroscope provides a reasonable first step: It helps developers

reason about the behaviour of a distributed system in order to aid them in their diagnosis efforts.

3 Tracing architecture

The request-flow graphs utilized by Spectroscope are obtained from a modified version of Stardust [31],

Ursa Minor’s end-to-end tracing architecture. Originally designed for workload modeling purposes, it has

been modified to support diagnosis tasks instead. Stardust is similar to other white-box end-to-end tracing

solutions, such as Magpie [3] and X-Trace [10]. Section 3.1 describes how Stardust collects traces and

stitches them together to create request-flow graphs. Section 3.2 describes the key design decisions and

features of Stardust. Finally, Section 3.3 describes an example request-flow graph.

5

3.1 Overview

Stardust is a white-box tracing framework that explicitly ties activity induced within various components

of the distributed system to the initiating request. It differs from black-box approaches to tracing, such as

Project 5 [2] and Pinpoint [7], as it allows trace points to be defined within components and identifies explicit

causal relationships between trace points without inferring them. Unlike Whodunit [6], and DARC [32],

which automatically instrument function names, Stardust requires programmers to manually insert trace

points at key areas of interest. Trace points can capture a trace-point name, a semantic label, for example

“cache hit” or “cache miss,” and low-level parameters, such as the values of parameters sent to the function

in which the trace point resides.

Stardust employs a two-step process to generate request-flow graphs. In the first step, which occurs

during runtime, activity records of trace points executed by requests are collected and sent to a central

server, which stores this data in a SQLite database. In addition to the trace-point name, semantic label,

and parameter values, activity records contain a per-request identifier called a breadcrumb and a timestamp.

The breadcrumb allows activity records generated on behalf of the same request to be tied together. The

timestamp allows these records to be ordered. Since Stardust does not assume synchronized timestamps

across machines, an explicit happens-before relationship [20] is created to order inter-component activity;

this is done by generating a new breadcrumb for the request and inserting a “old breadcrumb happens before

new breadcrumb” relationship in the database.

In the second step, request-flow graphs are generated by finding the breadcrumbs generated on behalf

of each request and stitching together the activity records that contain them. Graphs are generated in DOT

format [12]. Currently, this step must be performed offline after the system has shut down; however, it could

also be performed online.

3.2 Design and features

This section lists the key features and design decisions made in modifying Stardust to support diagnosis.

Definition of initiating request: Activity performed in a distributed system can be attributed either to

the request that placed the corresponding data in the system, or the request in whose context the activity is

performed. That is, there are two possible initiating requests for any activity performed in the system. For

example, the initiating request of a cache eviction can either be defined as the request that initially inserted

the item being evicted, or the request on whose causal path the item is evicted. Since Stardust was designed

for workload modeling purposes, it originally used the former definition. For diagnosis, however, we have

found that the latter definition is more useful, as it allows for creation of more intuitive request-flow graphs.

For example, under the latter definition, requests-flow graphs always end with the last trace point executed

before a response is sent to the client, whereas under the former, requests-flow graphs often contained an

arbitrary number of trace points that were executed after the response was sent.

Automatic RPC instrumentation: Stardust hooks into Ursa Minor’s RPCGEN mechanism to automat-

ically instrument RPC calls and replies. This yields component-level instrumentation granularity automati-

cally.

Support for expressing parallelism and joins: Request-flow graphs generated by Ursa Minor make

apparent the structure of requests. Parallelism and joins are exposed to impart as much information as

possible to the developer. For example, during a striped read the distributed system should read data from

all of the stripes, each of which is located on a different storage node, in parallel. Failure to do so is a

design issue that is easily exposed by request-flow graphs that show request structure. Similarly, joins allow

developers to see where the request must wait for slow excessively components before completing. For the

case of a striped read, the join might expose the fact that one storage node always takes much longer to reply

than the others.

6

Benchmark Tracing Tracing Ovhd

off on

linux 1,716s 1,723s 0.4%

build

IoZone 2,583s 2,632s 1.9%

postmark 49tps 46tps 6.1%

large

SFS97 1.5 Msec/op 1.6 Msec/op 6.7%

355 Ops/s

Table 1: Effect of end-to-end tracing on Ursa Minor’s performance. Performance numbers for

linux-build, IoZone, postmark-large, and SFS97 are shown for two cases: the first with tracing dis-

abled, and the second with tracing enabled. For the latter case, a request-sampling percentage of 20% was

used. The maximum performance difference observed 6.7%. Configuration details for the benchmarks used

can be found in Section 5.1. The results of 3 runs were averaged to obtain the above numbers.

To support expression of parallelism and joins in the request-flow graphs, Stardust’s instrumentation

API exposes the following functions:

• new bcs = get one to many(original bc)

• new bc = get many to one(original bc)

Developers can use the former function to express parallelism; one new breadcrumb is inserted in each

concurrent thread and a happens-before relationship is inserted between each new breadcrumb and the orig-

inal breadcrumb. Conversely, the latter allows developers to express join operations; one new breadcrumb

is generated and a happens-before relationship is inserted between the breadcrumbs contained in the threads

invoked in the join and the new breadcrumb.

Support for request-sampling: To minimize the effect on performance, activity records are not sent

to the database on the critical path of requests. Rather, generated records are stored in a 64MB buffer, which

is emptied periodically by a flusher thread. If the buffer is full, newly generated records are dropped, as

blocking until the buffer empties will significantly affect performance. A dropped record might mean that

an entire subpath of a request-flow graph will be lost, so it is beneficial to minimize this event. To this end,

Stardust employs request-level sampling. When a request enters the system, a decision is made whether or

not to collect its activity records. Currently, Stardust utilizes a request-sampling rate between 10% and 20%.

Table 1 shows Stardust’s effect on run-time performance when a request-sampling rate of 20% is used; the

maximum performance degradation observed is 6.7%.

Support for critical-path extraction: Stardust’s stitching mechanism can be configured to extract

only the critical paths of sampled requests.

3.3 Request-flow graphs

Figure 1 shows a request-flow graph of a striped READ. Parallel paths in this graph represent concurrent

activity. Nodes represent trace-point names concatenated with the optional semantic label. Edges are labeled

with the latency between execution of the parent and child trace points, in wall-clock time. This helps

identify where time is spent processing a request.

7

4 Spectroscope design and implementation

Spectroscope is written as a Perl application that interfaces with MATLAB when performing statistical com-

putations. It takes as input request-flow graphs specified in the DOT language [12]. At its core, Spectroscope

expects that requests that take similar paths through a distributed system should incur similar response times

and edge latencies and that deviations from this expectation indicate performance problems. In a distributed

storage system this expectation is valid because the time required to a process a request is largely determined

by the caches and disks that it visits, not by computation.

The rest of this section is organized as follows. Section 4.1 describes how Spectroscope helps devel-

opers build intuition about system behaviour by visualizing request-flow graphs. Section 4.2 describes how

Spectroscope helps diagnose performance changes by comparing system behaviours. Section 4.3 describes

how mutations can be explained by identifying the low-level parameter differences between them and their

originators.

4.1 Visualizing system behaviour

To help developers build intuition about the behaviour induced by a workload, Spectroscope presents a

visualization of the unique paths taken by requests through the system. To do so, it takes as input the

generated request-flow graphs and bins them into categories of unique paths. Unique paths are determined

by encoding request-flow graphs into strings via a depth-first traversal—strings that differ represent unique

paths. Binning to aggregate information is necessary because distributed storage systems can service 100s

to 1000s of requests per second, so it is infeasible to visualize all of the request-flow graphs generated by

anything other than the most trivial workloads. Request-flow graphs are binned based on path because of the

expectation that requests that take similar paths through the distributed system should incur similar costs.

For each category, Spectroscope identifies the number of requests it contains, average response time

and variance. To identify where time is spent by requests within a category, Spectroscope also computes

average edge latencies and corresponding variances. As output, Spectroscope shows DOT graphs of the path

taken by requests in each category. Each graph is overlaid with the computed statistical information. The

categories can be ranked either by average response time, or variance in response time—both have proven

useful for helping identify performance problems. Categories that exhibit high average response times are

obvious points for optimization. Alternatively, high variance in response time is an indication of contention

for a resource.

Though binning request-flow graphs into categories reduces the amount of data presented to the devel-

oper by several orders of magnitude—for example, linux-build, which generates over 280,000 request-

flow graphs, yields only 457 categories—this is still too much detail to present if the developer is trying to

gain a coarse-grained sense of system behaviour in response to a workload. To enable such coarser-grained

views, Spectroscope supports zooming functionality.

Initially, Spectroscope presents a completely zoomed-out view in which categories are created by bin-

ning filtered versions of request-flow graphs that only expose the components accessed; nodes represent

RPC call and reply events, and edge latencies represent time spent within the component. These zoomed-

out graphs are both smaller in size than their fully detailed counterparts and induce fewer categories. As

such, the zoomed-out view allows the developer to more easily gain a global sense of system behaviour.

He can identify which components tend to be accessed and how much time is spent in each without being

encumbered by the details of the paths taken by requests within them. In the zoomed-out view, only 194

categories are generated by linux-build. If the developer notices interesting behaviour in the zoomed-out

view (e.g., a category in which a component traversal takes a long amount of time), he can choose to “zoom

in” by exposing the instrumentation within that component, thus revealing the paths taken by requests within

it.

8

4.2 Comparing system behaviours

When comparing system behaviours, Spectroscope takes as input activity from a non-problem period and

a problem period. It identifies behaviour in the problem period that is different from the non-problem

period and, for each of these mutations, identifies their candidate originators—what the mutations could

have looked like in the non-problem period. Finally, Spectroscope ranks the observed mutations by how

much they contribute to the overall change in performance.

Ranking is necessary for two reasons. First, the performance problem might have multiple root causes,

each of which represents an independent performance problem, and causes its own set of mutations. In this

case, it is useful to identify the mutations that most affect performance to focus diagnosis effort where it will

yield the most benefit.

Second, even if there is only one root cause to the performance problem (e.g., a misconfiguration),

many mutations will still be observed. This is because requests directly affected by the root cause will effect

changes in system resource usage, and hence, induce even more mutations. To illustrate this point, consider

a newly introduced bug in a cache that causes more requests to miss in that cache than before. The requests

directly affected by this bug will use more space in the next cache in the system, forcing some requests that

used to hit in this next-level cache to also start missing. To help navigate this host of mutations, ranking is

useful. In the future, we hope to also infer causality between mutations, which would help Spectroscope

better identify the mutations most directly related to the root cause.

There are several challenges involved in comparing system behaviours, listed below.

Mutations must be automatically identified: Spectroscope currently considers two possible muta-

tions in behaviour. Structural mutations represent requests that have changed in the path they take through

the distributed system. Response-time mutations represent requests that take the same path, but which have

changed in the time needed to service them (i.e., their response time).

The candidate originators must be automatically identified: Identifying candidate originators serves

two purposes. First, it allows developers to compare the path and costs of a mutation to its corresponding

path and costs during the non-problem period, thus aiding his intuition. Second, it allows mutations to

be ranked by how much they affected the change in performance. Heuristics are needed to identify the

candidate originators of structural mutations; candidate originators of response-time mutations are requests

from the non-problem period that belong to the same category as the mutation.

Natural variations must be distinguished from true behaviour changes: It is unreasonable to as-

sume two periods of activity will yield absolutely identical behaviour. There will always be some natural

variance in the response time of requests and in the path taken by requests through the system. Statistical

tests are required to disambiguate this natural variance from true behaviour changes.

4.2.1 Identifying Response-time mutations

Spectroscope uses the Kolomogrov-Smirnov two-sample, non-parametric hypothesis test [22] to automat-

ically identify response-time mutations. In general, two-sample hypothesis tests take as input two sample

distributions and determine whether the null hypothesis, that both are generated from the same underlying

distribution, is false. The decision of whether to reject the null hypothesis is made so as to keep the false-

positive rate less than a preset threshold. A non-parametric test, which does not require knowledge of the

underlying distribution, is used because we have observed that response times of requests are not distributed

according to well-known distributions. The Kolomogrov-Smirnov test was chosen specifically because it

identifies differences in both the shape of a distribution and its median. Pinpoint explored the use of the

Man-Whitney U test, which looks for only differences in the median [7].

The Kolomogrov-Smirnov test is used as follows. For each category, the distributions of response times

for the non-problem period and the problem period are extracted and input into the hypothesis test. The cate-

9

gory is marked as a response-time mutation if the hypothesis test rejects the null hypothesis. Categories that

contain too few requests to run the test accurately are not marked as response-time mutations by default. To

help identify what specific interaction or component accounts for the change in response time, Spectroscope

extracts the critical path—i.e., the path of the request on which response time depends—and runs the same

hypothesis test on the edge latency distributions. Edges for which the null hypothesis is rejected are marked

in red in the final output visualization.

When first using the Kolomogrov-Smirnov test, we often found it was too sensitive to changes in edge

latency and response time. It would identify categories as containing response-time mutations even if the

change in average response time was very small, and not worth diagnosing. To correct this problem, response

times, which had been specified in microseconds, are now rounded to the nearest millisecond before being

input into the test.

4.2.2 Identifying structural mutations

Since Spectroscope assumes the same workload was run in both the non-problem period and the problem-

period, it is reasonable to expect that an increase in the number of requests that take one path through the

distributed system in the problem period should correspond to a decrease in the number of requests that

take other paths. As such, categories that contain more requests from the problem period than from the

non-problem period are labeled as containing structural mutations and those that contain less are labeled as

containing originators. Before structural mutation categories and originator categories can be identified in

this manner, however, it is necessary to determine whether these changes in frequency actually represent a

change in system behaviour, or are just due to natural variance. This is currently accomplished by using a

threshold.

Spectroscope identifies a category as containing structural mutations only if it contains SM THRESHOLD

more problem-period requests than non-problem-period requests. Similarly, categories are identified as con-

taining originators if they contain O THRESHOLD more non-problem-period requests than problem-period

requests. In our experience diagnosing problems observed in Ursa Minor’s standard 5-component configu-

ration, we have found that good values for these thresholds range between 10 and 50. It is likely, however,

that developers will have to experiment with different values for these thresholds when diagnosing problems

that arise in different configurations, or in different classes of workloads than those currently used to test

Ursa Minor. To help alleviate some of the fragility associated with using thresholds, a χ2 statistical hypoth-

esis test [34] was implemented as a first-pass filter for determining whether overall structural behaviour had

changed. However, we found that there is always enough structural variance in request structure for such

tests to always reject the null hypothesis.

Once the total set of structural-mutation categories and originator categories are identified, Spectro-

scope must identify the candidate originators for each structural mutation. That is, it must identify the set of

originator categories that are likely to have contributed requests to a given structural-mutation category dur-

ing the problem period. Preferably, these candidate originators should also be ranked in a meaningful way.

Several heuristics are used to achieve this and are described below; Figure 4 shows how they are applied.

First, the total list of originator categories is pruned to eliminate categories which contain requests with

a different root node than those in the structural-mutation category. The root node describes the overall type

of a request, for example READ, WRITE, or READDIR; since Spectroscope assumes the same workload is

executed during the problem and non-problem period, it is safe to assume that requests of different high-level

types cannot be originator/mutation pairs.

Second, originator categories for which the decrease in request-count between the problem and non-

problem periods is less than the increase in request-count of the structural-mutation category are also pruned.

This reflects a 1 to unique N assumption between candidate originator and mutation categories. It is made

because, in the common case, structural mutations will exhibit a common subpath until the point at which

10

R e a d R e a d R e a d R e a d
L o o k u pN P : 1 0 0 0P : 7 0 0

N P : 3 0 0P : 2 0 0
N P : 5 5 0P : 1 5 0

N P : 6 5 0P : 1 0 0R e a d D i rN P : 2 0 0P : 1 0 0 N P : 1 1 0 0P : 6 0 0
Figure 4: How the candidate originator categories of a structural-mutation category are identified. The

shaded originator categories shown above will be identified as the candidate originators of the structural-

mutation category shown. The originator categories that contain LOOKUP and READDIR requests will not

be identified as candidates because their constituent requests are not READS. The top left-most originator

category contains READS, but will not be identified as a candidate because the decrease in frequency of

its constituent requests between the problem (P) and non-problem period (NP) is less than the increase in

frequency of the structural-mutation category.

they are affected by the problem and many different subpaths after that point. For example, a portion of

requests that used to hit in cache in the non-problem period may now miss in that cache, but hit in the cache

at the next level of the system. The remaining portion might miss at both levels because of the change in

resource demand placed on the second-level cache. 1 to unique N instead of 1-N is assumed because of

the large amount of instrumentation present in the system, minimizing the probability of requests from two

different originator categories contributing requests to the same structural-mutation category. Since the 1 to

unique N assumption may not hold for certain performance problems, the developer can optionally choose

to bypass this heuristic when identifying the candidate originator categories.

Finally, the remaining originator categories are identified as the candidates and ranked according to

probability of being a “true” originator of the structural mutation. Specifically, they are ranked according

to their similarity in structure to the mutation. This reflects the heuristic that originators and structural

mutations are likely to resemble each other. Similarity in structure is calculated by computing the normalized

string-edit distance between each of the candidate originator categories and the structural mutation. Though

computation of normalized string-edit distance is relatively expensive—O(K2) time is required to calculate

the edit distance between two strings of length K—the cost can be amortized by storing a database of edit

distances between previously observed paths taken by requests. This database can be reused and added to

whenever Spectroscope is run.

4.2.3 Ranking

Both structural-mutation categories and response-time-mutation categories are ranked in descending order

by their expected contribution to the change in performance. The contribution for a structural-mutation cate-

gory is calculated as the difference in number of problem period and non-problem period requests it contains

times the change in average response time in the problem period between it and its candidate originator cat-

11

egories. If more than one candidate originator category has been identified, a weighted average of their

average response times is used; weights are based on structural similarity to the mutation. The contribution

for a response-time-mutation category is calculated as the number of non-problem period requests contained

in the category times the change in average response time between the problem and non-problem period.

It is possible for categories to be labeled as containing both originators and response-time mutations,

or both structural and response-time mutations. Such categories are split into multiple ’virtual categories,’

each of which is ranked independently.

4.3 Explaining mutations

In many cases, it is possible to identify why a mutation occurred by identifying the differences in low-

level parameters seen by the mutation and its originator. Knowledge of these differences can further help

the developer identify the root cause, or may themselves be the root cause. For example, a response-time

mutation might be caused by a component sending more data in its RPCs than during the non-problem

period. Similarly, a structural mutation might be caused by a client which, during the problem period, issues

WRITEs at a smaller granularity than that natively supported by the distributed storage system. To service

these small WRITEs the storage system must first retrieve data from the storage-nodes (or disk) at its native

granularity and then insert the client’s data at the requested offset. Such read-modify writes can severely

reduce the performance of a storage system, as every WRITE incurs an extra READ.

Spectroscope allows developers to pick a mutation category and candidate originator category for

which they wish to identify low-level differences. Given these categories, Spectroscope induces a regression

tree [4] that shows low-level parameters and associated values that best separate requests in these categories.

Each path from root to leaf represents an independent explanation, in terms of parameters and associated

values, of why the mutation occurred. Since developers may already possess some intuition about what dif-

ferences are important, we envision them utilizing Spectroscope’s ability to explain mutations interactively.

If the developer does not like the set of explanations chosen, he can select a new set of explanations by

simply removing the parameter chosen as the root from consideration and re-running the algorithm.

The regression tree is induced as follows. First, a depth-first traversal is used to extract a template

describing the portion of request structure that is common between requests in both categories. Since low-

level parameters are expected to differ once the mutation starts to differ, structurally or edge latency-wise,

from its originator, the template describes only the common structure until the point of the first difference as

observed by the depth-first traversal. Second, a table in which rows represent requests and columns represent

associated parameter values is extracted by iterating through each request in the categories and extracting

parameters observed in portions of requests that fall within the template. Each row is labeled as belonging

to the problem or non-problem period. In creating this table, certain parameter values, such as the thread

ID and timestamp must always be ignored, as they are not expected to be similar across requests. Finally,

the table is fed as input to the C4.5 algorithm [26], which creates the regression tree.

5 Evaluation

This section presents a quantitative evaluation of Spectroscope. A qualitative evaluation of Spectroscope’s

utility in aiding diagnosis efforts was presented in Section 2. Section 5.1 describes the experimental setup.

Section 5.2 evaluates the expectation that requests that take the same path through a distributed system will

incur similar response times. Section 5.3 evaluates Spectroscope’s ability to automatically identify response-

time mutations and structural mutations. Section 5.4 shows that the low-level parameters that differentiate a

given mutation and originator can be automatically identified.

12

5.1 Experimental setup

All experiments described in this section were run using a simple 5-component configuration of Ursa Minor,

as shown in Figure 3. It consists of one NFS server, one metadata server, one Stardust trace collection server,

and two storage nodes. The NFS server and metadata server were co-located on one machine; all other

components were run on separate machines. The machines used were Dell SuperMicro 6014HT servers

with two Intel 3.00GhZ Xeon processors and 2GB of RAM.

Three benchmarks were used in the evaluation. For all benchmarks, a request-sampling rate of 20%

was used.2 Both SM THRESHOLD and O THRESHOLD were set to 10.

Linux-build: This benchmark consists of copying the linux 2.6.32 tarball to Ursa Minor and building

it from scratch.

Postmark-large: This synthetic benchmark is designed to evaluate the small file performance of

storage systems. Such small-file workloads can be induced by e-mail applications and web-based com-

merce [17]. For this evaluation, Postmark has been configured to utilize 224 subdirectories, 50,000 transac-

tions, and 100,000 files. This configuration yields a more strenuous workload than the default settings.

SPEC SFS 97 V3.0 (SFS97): This synthetic benchmark is the industry standard for measuring stor-

age system scalability and performance [29]. It applies a periodically increasing load of NFS operations to

a storage system’s NFS server and measures the average request response time. For this evaluation, SPEC

SFS was configured to generate load between 50 and 350 operations/second in increments of 50 opera-

tions/second. 350 operations/second represents the limit of the 5-component configuration of Ursa Minor.

IoZone: This benchmark sequentially writes, re-writes, read, and re-reads a 5GB file [24].

5.2 Requests that take the same path will incur similar response-times

When comparing system behaviours, Spectroscope relies on the expectation that requests that take the same

path through a distributed storage system should incur similar costs (response times and edge latencies) and

that deviations from this expectation indicate behaviour changes. Spectroscope’s ability to identify response-

time mutations is most sensitive to this expectation, whereas only the ranking of structural mutations is

affected.

For response-time mutations, both the number of false negatives (i.e., categories incorrectly identified

as not containing mutations) and false positives (i.e., categories incorrectly identified as containing muta-

tions) when comparing system behaviours will increase with the number of categories that do not meet the

expectation. The former will increase when categories do not meet the expectation due to high variance

in response time, as this will reduce the Kolomogrov-Smrinov test’s power to differentiate true behaviour

changes from natural variance. The latter will increase when categories do not meet the expectation because

requests within them exhibit similar response times during a single run of the system, but different response

times across runs. It is important to note that both cases are likely to be caused by latent performance

problems within the system and thus should be investigated in of themselves.

Figure 5(a) shows the CDF of the squared coefficient of variation (C2) of response time for large cat-

egories induced by linux-build, Postmark-large, and SFS97. C2 is a normalized measure of variance

and is defined as (σ
µ
)2. Distributions with C2 less than one are considered to exhibit low variance, while

those with C2 greater than one exhibit high variance [13]. As such, C2 for a category is a measure of how

well it meets the similar paths/similar categories expectation. Large categories contain over 10 requests;

Table 2 shows that these categories account for only 17%—29% of all categories, but contain over 99% of

all requests. Categories containing a smaller number of requests are not included because the C2 statistic is

not meaningful for them; including these categories unfairly biases the results optimistically.

220% is the minimum sampling rate needed to diagnose problems in linux-build. Lower sampling rates could be used for

larger benchmarks.

13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
2
 for categories induced by each benchmark

C
D

F

Linux−build

Postmark−large

SFS97

(a) C2 for categories induced when using full request-flow

graphs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
2
 for categories induced by each benchmark

C
D

F

Linux−build

Postmark−large

SFS97

(b) C2 for categories induced when graphs are filtered to

include only component traversals

Figure 5: CDF of C2 for large categories induced by various benchmarks. These graphs show the

squared coefficient of variation of response-time, a normalized measure of variance defined as (σ
µ
)2, for

large categories induced by linux-build, postmark-large, and SFS97. Requests in categories for which

C2 is less than 1 exhibit low variance in response time, whereas those in categories for which C2 is greater

than one exhibit high variance. Figure 5(a) shows that when the full request-flow graphs are used, 97%

of categories induced by linux-build and postmark-large exhibit C2 less than 1. For SFS97, 73% of

categories induced exhibit C2 less than 1. Figure 5(b) shows that when the request-flow graphs are filtered

to show only component traversals, 59% of categories induced by SFS97 exhibit C2 less than 1.

For all of the benchmarks, at least 73% of the large categories induced exhibit C2 less than 1. C2 for all

the categories generated by postmark-large is small. 98% of all categories exhibit C2 less than 1 and the

maximum C2 value observed is 7.12. The results for linux-build are slightly more heavy-tailed; 97% of

all categories exhibit C2 less than 1, but at the 99% percentile C2 = 325.23 and the maximum value C2 value

observed is 724.9. The categories induced by SFS97 display the highest variance of the 3 benchmarks. Only

73% of all categories exhibit C2 less than 1. C2 remains under 10 until the 97th percentile and at the 99th,

C2 = 381. The maximum C2 value observed is 1292. We believe that the large tail observed in linux-build

and SFS97 is motivation for creating a tool to analyze the main sources of variance in a distributed system,

as we are interested in identifying the latent problems they represent.

Ursa Minor’s rpcgen mechanism automatically instruments RPCs; additional instrumentation within

components has been added by the developer. Though, for most components, developer’s of Ursa Minor

have undertaken the effort necessary to add such intra-component instrumentation, other systems may not

posses such granularity. For example, X-Trace for Hadoop [19], Pinpoint [7], and Dapper [9] only capture

inter-component activity (e.g., only RPCs are instrumented). This more limited instrumentation granularity

means that paths taken within components cannot be disambiguated. Intuitively, one would expect the

squared coefficient of variation for the induced categories to be larger. In the worst case, the variance within

categories might be too large to make use of statistical tests to properly identify response-time mutations.

Figure 5(b) shows the CDF of the squared coefficient of variation when the request-flow graphs are

filtered so as to include only component traversals. As expected, zooming out reduces the number of cat-

egories created, but increases variance within each category. linux-build and postmark-large are not

14

linux postmark SFS97

build large

of categories 457 748 1,186

large categories 23.9% 29.0% 17.4%

of requests 283,510 126,245 405,278

sampled

requests in 99.7% 99.2% 98.9%

large categories

Table 2: Distribution of requests in the categories induced by various benchmarks. This table shows

the total number of requests sampled for linux-build, postmark-large, and SFS97, and the number of

resulting categories. C2 results for these categories are shown in Figure 5(a). Though many categories are

generated, most contain only a small number of requests. Large categories, which contain more than 10

requests, account for between 17-29% of all categories generated, but contain over 99% of all requests.

affected much, but, the percentage of categories induced by SFS97 that exhibit C2 less than 1 drops from

73% to 59%. To reduce C2 when only component-granularity graphs are available, parameters contained

in RPCs that are representative of the amount of work to be done within a component should be added to

the request-flow graphs. Doing so would disambiguate requests that place different demands on the relevant

component and thus reduce C2.

5.3 Response-time and structural mutations are identified

Spectroscope’s ability to automatically identify response-time mutations and structural mutations was eval-

uated by injecting known performance problems in Ursa Minor and judging how well Spectroscope was

able to identify the resulting mutations. The non-problem period behaviour was obtained by simply running

linux-build on Ursa Minor, whereas the problem period behaviour was obtained by running linux-build

against Ursa Minor with the performance problem injected; linux-build was used, as opposed to the other

benchmarks, because it represents a real-world workload. Section 5.3.1 evaluates response-time mutation

identification and Section 5.3.2 evaluates structural mutation identification.

For all of the experiments, the normalized discounted cumulated gain (nDCG) [15] is used to evaluate

the quality of Spectroscope’s output. nDCG is a metric commonly used in information retrieval. It captures

the notion that, for a ranked list, highly-ranked false positives (e.g., those ranked in the top 10) should affect

the judged quality of the results more than low-ranked ones (e.g., those that appear at the end of the list).

As such, nDCG naturally aligns with the way developers will utilize the ranked list of mutated categories

output by Spectroscope. They will naturally focus their diagnosis efforts on higher ranked items first; if

these highly-ranked categories are relevant—that is they are useful in helping diagnose the root cause—they

will not investigate the lower-ranked ones, some of which may be false positives.

The equations in Figure 6 show how the nDCG is calculated. First, each category in the ranked list is

assigned a relevance score of 0 or 1, depending on whether it contains mutations that were induced by the

injected problem and would help the developer diagnose the root cause; items assigned a relevance score of

0 are false positives with respect to the induced problem, but in many cases, represent other undiagnosed

problems in the system. The discounted cumulated gain (DCG) is then calculated by summing the scores,

discounted by a value logarithmically proportional to the corresponding category’s rank. Finally, the nDCG

is calculated by normalizing the DCG by the score that would be returned for an ideal version of the ranked

15

DCG = rel1 +
N

∑
i=2

reli

log2(i)
(1)

IDCG = ideal rel1 +
N

∑
i=2

ideal reli

log2(i)
(2)

nDCG =
DCG

IDCG
(3)

Figure 6: Equations for calculating the normalized discounted cumulated gain (nDCG). In Equation 1,

the discounted cumulated gain is calculated by assigning a relevance score of 0 or 1 to each item in the

ranked list and summing a logarithmically discounted version of these scores. In Equation 2, the DCG of an

ideal version of the ranked list, in which false positives are ranked at the end and relevant items are ranked

near the beginning, is calculated. Finally, in Equation 3, the nDCG is calculated by normalizing the DCG

against the ideal DCG score.

list, in which all relevant categories are ranked at the top and false positives at the bottom. The nDCG can

vary from 0 (bad) to 1 (excellent). Since a ranked list that contains only one relevant category, but which

is ranked first, will yield a nDCG of 1, both the total number of mutated categories output by Spectroscope

and the fraction of those that are relevant are also presented.

5.3.1 Response-time mutations are identified

To evaluate Spectroscope’s ability to automatically identify response-time mutations and localize the inter-

actions responsible for the mutation, a 1ms spin loop was injected into the storage nodes’ WRITE code path

at the point just before the RPC reply is sent. As such, during the problem period, any WRITE requests that

accessed a storage node incurred an extra 1ms delay. The request-flow graphs for these WRITEs exhibit this

delay in edges whose destination node is marked as a STORAGE NODE RPC REPLY. Specifically, In request-

flow graphs from the non-problem period, these edges exhibit an average latency of 0.02ms, whereas in the

problem period, their average latency increased to 1.02ms. This injected problem increased the run time

of linux-build from 44 minutes to 51 minutes and is representative of the class of problems for which

identification of response-time mutations is useful.

Table 3 summarizes the ranked list of mutated categories output by Spectroscope; it shows that Spec-

troscope was able to correctly identify the induced response-time mutations. Of the 95 categories identified,

68 were identified as response-time mutation categories and contained WRITEs that that accessed a storage

node. Additionally, for each of these categories, at least one ⋆ → STORAGE NODE RPC REPLY edge was

identified as the cause of the mutation. Since these categories would help a developer diagnose the injected

problem, they were all deemed relevant. The resulting nDCG was 0.93.

Table 4 shows the positions of relevant categories and provides intuition for why a nDCG of 0.93 was

obtained. Though most of the highest-ranked categories are relevant, the 1st and 5st ranked categories are not

and thus hurt the NDCG score. Both contain response-time mutations; they are caused by a latent contention

problem in the NFS server that yields vastly different response times across runs depending on the order in

which concurrent requests are serviced. Many low-ranked categories also are relevant; these categories are

affected by the injected problem, but do not contain enough requests to be awarded a high rank.

The remaining false positives all contain structural mutations; the ones ranked higher than 73 are in-

duced either due to variance between runs in the amount of data sent by the linux client during individual

WRITE operations, or are induced as a by-product of the unusual CREATE behaviour described in Section 2.2.

16

Total number of requests sampled 565,295

Total number of categories 605

Number of categories 95

identified as mutations

Percent relevant 72% (68)

nDCG 0.93

Table 3: Evaluation of Spectroscope’s ability to identify response-time mutations. A 1ms spin-loop was

injected into Ursa Minor’s storage nodes and Spectroscope was used to compare system behaviour before

and after this change. Of the 95 total categories identified by Spectroscope as containing mutations, 72%

would have helped the developer diagnose the root cause. Since these relevant categories were awarded high

ranks, a nDCG of 0.93 was achieved.

Rank

1 x x x x x x x x

11 x x x x x x x x x x

21 x x x x x x x x x

31 x x x x x x x x x

41 x x x x x x x x x

51 x x x x x x x x x x

61 x x x x x x x x x x

71 x x x

81

91

Table 4: Visualization of the ranked list of mutated categories output by Spectroscope when evaluating

its ability to identify response-time mutations. Slots that contain x’s denote the ranks of relevant cate-

gories, whereas blank slots denote false positives. Most high-ranked categories are relevant, thus allowing

for a high nDCG score. The false positives awarded the 1th and 5th ranks are caused by already existing

latent problems in Ursa Minor.

The ones ranked 73 and lower are induced due to natural variance in the way in which Ursa Minor services

requests; it is likely that a smaller value for SM THRESHOLD would eliminate them. Since none of these false

positives are assigned high ranks, they are unlikely to mislead the developer during diagnosis of the injected

problem.

5.3.2 Structural mutations are identified

To evaluate Spectroscope’s ability to identify structural mutations and corresponding candidate originator

categories, the NFS server’s data cache size was reduced from 384MB to 20MB for the problem-period

run. As such, when comparing system behaviours between the non-problem and problem period, one would

expect Spectroscope to identify structural-mutation categories that contain requests that missed in the NFS

server’s cache during the problem period. Candidate originator categories for each of these structural mu-

tation categories should contain requests that hit in cache during the non-problem period. This injected

problem is representative of the class of performance problems for which identification of structural muta-

tions is useful.

Table 5 summarizes the results of running Spectroscope. Of the 32 categories identified as containing

17

Total number of requests sampled 567,657

Total number of categories 622

Number of categories 32

identified as mutations

Percent relevant 53% (17)

nDCG 0.83

Table 5: Evaluation of Spectroscope’s ability to identify structural mutations. Ursa Minor’s NFS

server’s cache size was changed from 384MB to 20MB and Spectroscope was used to compare the system

behaviour before and after this change. Of the 32 total categories identified by Spectroscope as containing

mutations, 53% would have helped the developer diagnose the cause. Since these relevant categories were

awarded high ranks, a nDCG of 0.83 was achieved.

Rank

1 x x x x x x x x

11 x x x x x x x

21 x x

31

Table 6: Visualization of the ranked list of mutated categories output by Spectroscope when evaluating

its ability to identify structural mutations. Slots that contain x’s denote the ranks of relevant categories,

whereas blank slots indicate false positives. Most high-ranked categories are relevant, allowing for a high

nDCG score. The false positive awarded the 1th rank is caused by the same latent problem in Ursa Minor as

that which induced the false positives awarded the 1th and 5th ranks when evaluating Spectroscope’s ability

to identify response-time mutations.

mutations, 31 were labeled as structural-mutation categories and 1 labeled as a response-time-mutation

category. 17 of the structural-mutation categories contain READDIR, WRITE, and READ, and REMOVE

operations that missed in cache during the problem period; the highest ranked candidate originator category

for each contains requests from the non-problem period that hit in cache. Since these categories would help

a developer diagnose the cause of the problem, they were all deemed relevant, yielding a relatively high

nDCG score of 0.83.

Table 6 shows the ranks assigned to the mutations identified by Spectroscope. Once again, most high-

ranked categories are relevant. False positives assigned the 1st and 3rd ranks hurt the nDCG score the most;

the former contains response-time mutations and occurs as a result of the same latent contention problem

observed when evaluating Spectroscope’s ability to identify response-time mutations. The root cause of the

latter is not yet known. Lower-ranked false positives all contain structural mutations and are induced due to

natural variance in the way REMOVE operations are serviced by Ursa Minor.

Spectroscope’s results when identifying structural mutations both exhibit a lower nDCG score and a

higher ratio of false positives to relevant results than those obtained when evaluating response-time mutation

identification. This is because the performance impact of changing the NFS server’s cache size is not as great

as that of adding a 1ms delay to the storage nodes. Less categories and requests are affected, making it harder

for Spectroscope to properly rank relevant categories higher than false positives. Additionally, there are less

relevant categories overall, allowing for a higher ratio of false positives to relevant results. It is important to

note that even though the cache size change affected performance only slightly, Spectroscope was still able

to return results that would help developers diagnose the problem.

18

5.4 Low-level differences are identified

The IoZone benchmark used to evaluate Spectroscope’s ability to identify the low-level parameters that

best differentiate requests contained in a given mutation and originator category. Request-flow graphs for

the non-problem period were obtained by simply running IoZone. Problem period request-flow graphs were

obtained by mounting Ursa Minor’s NFS server on the client with the wsize option changed from 16KB,

the fundamental granularity supported by Ursa Minor’s NFS server, to 2KB. As such, during the problem

period, clients issued WRITE requests containing only 2KB of data, whereas during the non-problem period,

each WRITE request contained 16KB of data. This change resulted in many read-modify writes.

Spectroscope was used to identify the low-level differences between a category containing read-modify

writes and a category containing regular writes. The resulting regression tree indicated that the requests in

the two categories were perfectly separated by a request’s count parameter, which indicates how much data

should be written. Specifically, the results indicated that requests with count > 2KB should be classified as

belonging to the non-problem period, and those with count < 2KB should be classified as belonging to the

problem period.

6 Related work

There has been a significant amount of work in problem diagnosis in recent years. This section categorizes

them.

General purpose tools: Tools such as Pip [27] and TAU [30] are designed with the same overall goal

as Spectroscope: they aid diagnosis of general performance problems by helping developers build intuition

about system behaviour. Both Pip and Spectroscope compare expected system behaviour to actual behaviour

and report the differences. While Spectroscope uses behaviour observed during periods of acceptable per-

formance as the expected behaviour, Pip requires users to manually write these expectations. Expectations

must be specified for each component or subcomponent for which behaviour is to be compared, and thus

cannot easily be used to help developers understand the overall behaviour of the system. The TAU toolchain

is an infrastructure for understanding MPI behaviour via profiling and visualization. TAU can identify the

overall latency of K-deep callpaths, an approach resembles Spectroscope’s ability to identify the average

response time of requests within a category.

Tools for identifying a specific class of problem: Diagnosis tools such as MUVI [21], Pinpoint [7],

Project 5 [2], Whodunit [6], and DARC [32] are designed to identify very specific classes of problems

and, as such, represent an alternative first step toward the goal of automating problem diagnosis. MUVI

uses data-mining techniques to identify cases in linux in which correlated variables, such as a string and

associated length, should be held together in a critical section, but are not. Pinpoint uses black-box end-to-

end traces to identify failed components in a distributed system. Project 5 uses black-box traces of message

passing events to identify the inter-component bottlenecks in a distributed system. Whodunit uses end-to-

end tracing to aid profiling efforts in distributed transactional systems. DARC is a single process tool that

automates profiling. It identifies the function call subpath that contributes most to latency of a particular

class of function executions. This approach is similar to Spectroscope’s ability to identify the average edge

latencies along the critical path of requests within a category. However, where Spectroscope groups requests

by structure, DARC’s classes are made of function executions that incur similar latencies.

Tools for identifying anomalies: Many tools exist to identify anomalies in distributed systems; Spec-

troscope differs from all of these in that it attempts to identify changes in behaviour, not anomalies. The

tool described by Xu [35], PeerPressure [33], and Magpie [3], use machine-learning-based approaches. Of

these Magpie bears the most relevance to Spectroscope, as its anomaly detection algorithm operates on

request-flow graphs obtained from end-to-end traces. Mapgie uses clustering algorithms to group traces and

identifies unitary clusters as anomalies. Features used by the clustering algorithm include the serialized re-

19

quest structure and resource-usage metrics. Spectroscope initially also used clustering algorithms to reduce

the number of categories [28], but we found that doing so impeded diagnosis efforts, as it made under-

standing how requests in different categories differ more difficult. It also proved difficult to automatically

determine the right number of clusters. It is possible that the former issue can be alleviated by sophisticated

distance metrics and feature sets that align with a developer’s notion of request similarity.

Many diagnosis tools, such as Ganesha [25] and that described by Kasick [16], utilize black-box metrics

and peer comparison to identify anomalous activity in tightly-coupled systems. Though such black-box

tools can be scaled easily and readily applied to existing systems, they cannot be used to help developers

understand complex system behaviour.

Tools for identifying problems as a reoccurence: Tools such as SLIC [8] and that described by

Yuan [36] use machine learning to identify performance problems as reoccurences of those seen in the past.

These tools would compliment Spectroscope as well as all other diagnosis tools described in this section.

7 Conclusion

Spectroscope uses end-to-end traces of activity in distributed systems to aid developers in diagnosing per-

formance problems. By comparing the request-flow graphs observed in two periods or system versions,

Spectroscope identifies mutations and their originators. Experiences and experiments indicate that Spectro-

scope can provide significant assistance with this long-standing challenge.

References

[1] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger, James Hen-

dricks, Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasi-

van, Shafeeq Sinnamohideen, John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. Ursa

Minor: versatile cluster-based storage. Conference on File and Storage Technologies (San Francisco,

CA, 13–16 December 2005), pages 59–72. USENIX Association, 2005.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthi-

tacharoen. Performance debugging for distributed systems of black boxes. ACM Symposium on Oper-

ating System Principles (Bolton Landing, NY, 19–22 October 2003), pages 74–89. ACM, 2003.

[3] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie for request ex-

traction and workload modelling. Symposium on Operating Systems Design and Implementation (San

Francisco, CA, December 2004), pages 259–272. USENIX Association, 2004.

[4] Christopher M. Bishop. Pattern recognition and machine learning, first edition. Springer Science +

Business Media, LLC, 2006.

[5] Bryan M. Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instrumentation of pro-

duction systems. USENIX Annual Technical Conference (Boston, MA, 27 June–02 July 2004), pages

15–28. USENIX Association, 2004.

[6] Anupam Chanda, Alan Cox, and Willy Zwaenepoel. Whodunit: Transactional profiling for multi-tier

applications. EuroSys (Lisbon, Portugal, 21–23 March 2007), pages 17–30. ACM, 2007.

[7] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Dave Patterson, Armando Fox, and Eric Brewer.

Path-based failure and evolution management. Symposium on Networked Systems Design and Imple-

mentation (San Francisco, CA, 29–31 March 2004), pages 309–322. USENIX Association, 2004.

20

[8] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando Fox. Cap-

turing, indexing, clustering, and retrieving system history. ACM Symposium on Operating System

Principles (Brighton, United Kingdom, 23–26 October 2005), pages 105–118. ACM, 2005.

[9] Google technical presentation: It’s 11pm, and do you know where your RPC is?, March 2008.

[10] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica. X-Trace: a per-

vasive network tracing framework. Symposium on Networked Systems Design and Implementation

(Cambridge, MA, 11–13 April 2007). USENIX Association, 2007.

[11] Garth A. Gibson, David F. Nagle, William Courtright II, Nat Lanza, Paul Mazaitis, Marc Unangst, and

Jim Zelenka. NASD scalable storage systems. USENIX Annual Technical Conference (Monterey, CA,

June 1999). USENIX Association, 1999.

[12] Graphviz. www.graphviz.com.

[13] Mor Harchol-Balter. 15-857, Fall 2009: Performance modeling class lecture notes, 2009.

http://www.cs.cmu.edu/h̃archol/Perfclass/class09fall.html.

[14] James Hendricks, Raja R. Sambasivan, and Shafeeq Sinnamohideen. Improving small file performance

in object-based storage. Technical report CMU-PDL-06-104. Parallel Data Laboratory, Carnegie

Mellon University, Pittsburgh, PA, May 2006.

[15] Kalervo Jarvelin and Jaana Kekalainen. Cumulated gain-based evaluation of IR techniques. ACM

Transactions on Information Systems, 20(4):442–446. ACM, October 2002.

[16] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. Black-box problem diagnosis

in parallel file systems. Conference on File and Storage Technologies (San Jose, CA, 24–26 February

2010). USENIX Association, 2010.

[17] Jeffrey Katcher. PostMark: a new file system benchmark. Technical report TR3022. Network Appli-

ance, October 1997.

[18] Jeffrye O. Kephart and David M. Chess. The vision of autonomic computing. IEEE Computer,

36(1):41–50. IEEE, January 2003.

[19] Andrew Konwinski. Technical Presentation at Hadoop Summit: Monitoring Hadoop using X-Trace,

March 2008. http://research.yahoo.com/node/2119.

[20] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of

the ACM, 21(7):558–565. ACM, 1978.

[21] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhenmin Li, Raluca A. Popa, and

Yuanyuan Zhou. MUVI: automatically inferring multi-variable access correlations and detecting re-

lated semantic and concurrency bugs. ACM Symposium on Operating System Principles (Stevenson,

MA, 14–17 October 2007), pages 103–116. ACM, 2007.

[22] Frank J. Massey, Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American

Statistical Association, 46(253):66–78, 1951.

[23] Jeffery C. Mogul. Emergent (Mis)behavior vs. Complex Software Systems. EuroSys (Leuven, Bel-

gium, 18–21 April 2006), pages 293–304. ACM, 2006.

[24] William Norcott and Don Capps. IoZone filesystem benchmark program, 2002. www.iozone.org.

21

[25] Xinghao Pan, Jiaqi Tan, Soila Kavulya, Rajeev Gandhi, and Priya Narasimhan. Ganesha: black-box

fault diagnosis for MapReduce systems. Hot Metrics (Seattle, WA, 19–19 June 2009). ACM, 2009.

[26] J. R. Quinlan. Bagging, boosting and C4.5. 13th National Conference on Artificial Intelligence (Port-

land, Oregon, 4–8 August 1996), pages 725–730. AAAI Press, 1996.

[27] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah, and Amin

Vahdat. Pip: Detecting the unexpected in distributed systems. Symposium on Networked Systems

Design and Implementation (San Jose, CA, 08–10 May 2006), pages 115–128. USENIX Association,

2006.

[28] Raja R. Sambasivan, Alice X. Zheng, Eno Thereska, and Gregory R. Ganger. Categorizing and dif-

ferencing system behaviours. Workshop on hot topics in autonomic computing (HotAC) (Jacksonville,

FL, 15 June 2007), pages 9–13. USENIX Association, 2007.

[29] SPECsfs. www.spec.org/sfs.

[30] Sameer S. Shende and Allen D. Malony. The Tau Parallel Performance System. International Journal

of High Performance Computing Applications, 20(2):287–311. SAGE, 2006.

[31] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-Malek, Julio Lopez,

and Gregory R. Ganger. Stardust: Tracking activity in a distributed storage system. ACM SIGMET-

RICS Conference on Measurement and Modeling of Computer Systems (Saint-Malo, France, 26–30

June 2006), pages 3–14. ACM, 2006.

[32] Avishay Traeger, Ivan Deras, and Erez Zadok. DARC: Dynamic analysis of root causes of latency

distributions. ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems

(Annapolis, MD, 02–06 June 2008). ACM, 2008.

[33] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang. Automatic misconfiguration

troubleshooting with PeerPressure. Symposium on Operating Systems Design and Implementation

(San Francisco, CA, 06–08 December 2004), pages 245–258. USENIX Association, 2004.

[34] Larry Wasserman. All of Statistics, second edition. Springer Science + Media Inc., March 2004.

[35] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detecting large-scale

system problems by mining console logs. ACM Symposium on Operating System Principles (Big Sky,

MT, 11–14 October 2009), pages 117–132. ACM, 2009.

[36] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng Zhang, Yi-Min Wang, and Wei-Ying Ma. Au-

tomated Known Problem Diagnosis with Event Traces. Automated Known Problem Diagnosis with

Event Traces (Leuven, Belgium, 18–21 April 2006), pages 375–388. ACM, 2006.

22

	Introduction
	Problems seen in Ursa Minor
	Ursa Minor
	Problem 1: Create behaviour
	Problem 2: MDS configuration
	Problem 3: Metadata prefetching
	Summary

	Tracing architecture
	Overview
	Design and features
	Request-flow graphs

	Spectroscope design and implementation
	Visualizing system behaviour
	Comparing system behaviours
	Identifying Response-time mutations
	Identifying structural mutations
	Ranking

	Explaining mutations

	Evaluation
	Experimental setup
	Requests that take the same path will incur similar response-times
	Response-time and structural mutations are identified
	Response-time mutations are identified
	Structural mutations are identified

	Low-level differences are identified

	Related work
	Conclusion

